SunGlacier in “Making Waves” finals

Making Waves provides a podium “for showcasing the most intriguing examples of Dutch ingenuity”. The event supports innovative ideas to get past the ‘promising stage’. Making Waves serves as the grand finale in the selection process for the innovation that will represent the Netherlands at the European level of “Ideas from Europe”.

Keynotes by Kofi Annan, former Secretary General of the United Nations, and Tom Middendorp, Chief of Dutch Defence, will set the scene and make us realise that it’s time to act and turn plans into action.


We did it!

The Dutch Ministry of Defense invited the SunGlacier team to Mali, where we are able to test our idea – making water out of thin air – in the middle of the Sahara desert, the driest, hottest place on earth. It was a success! With our SunGlacier project, we demonstrate that it is possible to harvest water from air, using only solar energy – making SunGlacier probably the world’s first artificial water well to work entirely off the grid.

Before we left, we knew our design worked in ideal conditions; now – after a punishing week in the Sahara — we know we can make it work almost anywhere.

The underlying principle is simple:

When you grab a can soda out of the fridge on a hot summer day, small water drops appear on the surface. This is how we make SunGlacier work: condensation.

  • During the Dutch summer, these droplets start appearing when the can is approximately 15 degrees colder than the outside temperature.
  • But in Mali, which is much, much dryer – typical air on a Mali summer’s day holds roughly half the water vapor than the air on a dry hot day in the Netherlands – you need a 50-degree-difference in temperature to see those droplets.

So, making water out of thin air, using a 12Volts, 50Watt system, in the driest conditions is a huge challenge.

Inspired by Moon Landers, we built the “Desert Twins” especially for this occasion. One of them is the water maker, which runs with the same power as a small car light, the other one contains our energy unit, which stores the solar power.

The first three days of testing were frustrating; our own sweat was the only liquid produced.

Despite the fact that during the course day the water maker was located in the shadow of the solar panel, the unit was still too hot to function. We soon realized that solar radiation reflecting off the surrounding sand was to blame. Our solution was to add a layer of insulation outside and inside of the box.

Next we discovered that by burying a cooling pipe 2 meters under ground – where it is 4 degrees less hot — we could air cool our apparatus in the punishing heat. Unfortunately, the advantage was short-lived: given the insulating properties of desert sand, we soon had heated the sand around the pipe, and the temperature differential dwindled down to nothing.

So to further protect the apparatus from solar radiation – the unit was still too hot — we decided to build a tent around the water unit. But, still no water.

At some point the motor of our condenser started to overheat and make strange noises – the first signs of a total collapse. We re-configured our cooling air streams inside the machine. The noise didn’t stop, but the temperature inside the box decreased. Our morale improved.

Finally, on the fourth day, we succeeded in cooling the ambient air inside the box to such an extent that condensation could take place and something other than steam was possible. We opened the box, removed the insulation and saw, for the first time, actual liquid water. We had finally succeeded!

But the desert air was so thirsty that we witnessed a new phenomenon: upon opening the SunGlacier our water and ice evaporated so fast, that within 10 minutes everything disappeared. We had just enough time to document our success on photo and video.

On day 5 we produced even more water and ice – the extremely dense ice was harder than a rock.

We had succeeded in harvesting water in very harsh conditions, drawing about the same current as is needed to run a standard car headlight.

We learned so much in the desert. When we build a next model, our design will be even better. Our next priorities are: water storage and cleaning and enriching the water with minerals and salts.

The aim is to build a machine that works like a well – one that doesn’t need a liquid water source or electricity to operate.

But the real challenge now is finding a way to share our success – and our know-how – with the world.

It worked

SunGlacier succeeded to harvest water out of extreme hot and dry air in the desert of Mali. – powered by solar energy -.
General Middendorp, Dutch Chief of Defence, invited the SunGlacier team to perform different tests at UN camp Castor in Gao, Mali.
The first results will be unveiled at the press conference, organised by The Dutch Ministry of Defence, on April  25th in The Hague. 



SunGlacier DC04: Desert Twins shipped to the Sahara.

The SunGlacier team is looking forward to testing its latest structure in ultra-harsh locations. The DC04 “Desert Twins” – with their design inspired by a Moon lander – will embark on a mission that some experts say is too extreme to succeed. We are still optimistic because SunGlacier is focused on bending the impossible to make a beneficial project into a reality.

Is it really possible to harvest usable amounts of fresh water from air in one of hottest and driest areas on this planet? To find the answer our team is transporting the Twins to the Sahara for testing in a desert with temperatures of 40C – 45 Celsius  (104F – 113 Fahrenheit ) and a relative humidity less than 10%.  

If the DC04 Desert Twins succeed in producing water on site in these harsh conditions, there will be proof that our concept can be used nearly anywhere. In a few weeks updates will be published on this website and our Facebook page: SunGlacier.

Keep a watch for “impossible” updates coming soon!

SunGlacier DC02


The 20-inch cube of stainless steel is embedded with solar cells that power a refrigeration device, which in turn cools off an inverted cone to create condensation. Gravity then drips accumulated condensate into a glass to provide fresh drinking water. The challenge was to cool down the cone to just above freezing point without using a huge amount of energy. After several trials we managed to achieve that goal with 25 Watts of energy. The small solar panels on the top and sides of the cube produce 40 Watts, which allows to store excess energy in batteries for less sunny conditions. With the SunGlacier team we are doing research to find more solutions for cooling down surfaces in its most efficient way, off-grid, powered by solar, easy to scale up, and cheap to produce. Many people need to enjoy their own source of drinking water in the future, especially in drought-hit areas. Next to this device, we are developing a system that doesn’t have moving parts, perfectly to use for open agriculture. Later more about this new project.

Joining Wetskills to Iran

Ap Verheggen, SunGlacier’s creative mind, just returned from Iran where he joined a unique Wetskills event. Ap is appointed as an ambassdor and student coordinator for the Wetskills organisation, that mix Dutch and local students, in order to find “out of the box” solutions for real life water related challenges. Many countries already participated before in the Wetskills events: United States, Great-Brittain, India, South Africa, Taiwan, etc..


Severe drought in the Isfahan region, Iran

Following two weeks of hard work, cooperation and fun, the fice Wetskills teams presented their pitches and posters of this Wetskills Water Challenge in Iran. The ideas pitched were vastly ranging from technical solutions to give more time in adapting lifestyle for Rafsajan pistachio farmers to integrating sensor technology to create awareness by installing a large flamingo in Lake Urmia, reacting to water level, to entice inhabitants to a race to fill up the lake. A nice new introduction of rice farming in combination with dredging was given as solution for silting up of Anzali port and peach juice production as alternative livelihoods for the Hashgerd plain included a good sense of community work and regional economy development. Missing links were noticed in society and technology for the case of clean drinking water and by closing the gaps a solution was found.



Minister of Environment and Infrastructure of Kingdom of The Netherlands, Ms. Schultz van Haegen (middle) announced and awarded the winning team of Wetskills-Iran.

South African delegation visits SunGlacier

H.E. Vusi Bruce Koloane, ambassador of South Africa in The Netherlands (left of sculpture) together with the young experts at Museum Beelden aan Zee

Scientists from several universities in South Africa visited the SunGlacier sculpture at Museum Beelden aan Zee. They were suprised by the amount of water that the sculpture produced. South Africa is hit by drought as well, and these young generation experts were impressed by the SunGlacier technology.